首页> 外文OA文献 >Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach
【2h】

Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach

机译:使用多学科方法在超疏水表面上逐滴冷凝传热过程优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dropwise condensation has superior heat transfer efficiency than filmwise condensation; however condensate evacuation from the surface still remains a significant technological challenge. The process of droplets jumping, against adhesive forces, from a solid surface upon coalescence has been studied using both experimental and Computational Fluid Dynamics (CFD) analysis. Both Lattice Boltzmann (LBM) and Volume of Fluid (VOF) methods have been used to evaluate different kinematic conditions of coalescence inducing a jump velocity. In this paper, an optimisation framework for superhydrophobic surface designs is presented which uses experimentally verified high fidelity CFD analyses to identify optimal combinations of design features which maximise desirable characteristics such as the vertical velocity of the merged jumping droplet from the surface and energy efficiency. A Radial Basis Function (RBF)-based surrogate modelling approach using design of experiment (DOE) technique was used to establish near-optimal initial process parameters around which to focus the study. This multidisciplinary approach allows us to evaluate the jumping phenomenon for superhydrophobic surfaces for which several input parameters may be varied, so as to improve the heat transfer exchange rate on the surface during condensation. Reliable conditions were found to occur for droplets within initial radius range of r=20-40 μm and static contact angle θs~160º. Moreover, the jumping phenomenon was observed for droplets with initial radius of up to 500 μm. Lastly, our study also reveals that a critical contact angle for droplets to jump upon coalescence is θc~140º.
机译:逐滴冷凝比薄膜冷凝具有更好的传热效率。然而,从地面抽出冷凝水仍然是一项重大的技术挑战。使用实验和计算流体动力学(CFD)分析,都研究了液滴在聚结时克服粘附力从固体表面跳出的过程。莱迪思·玻尔兹曼(LBM)和流体体积(VOF)方法均已用于评估聚结引起跳跃速度的不同运动学条件。在本文中,提出了一种用于超疏水表面设计的优化框架,该框架使用经过实验验证的高保真CFD分析来确定设计特征的最佳组合,这些组合可以最大化期望的特性,例如合并的跳跃液滴从表面的垂直速度和能量效率。使用基于实验设计(DOE)技术的基于径向基函数(RBF)的替代建模方法来建立接近最佳的初始过程参数,围绕该参数进行研究。这种多学科方法使我们能够评估超疏水表面的跳变现象,对于该表面而言,几个输入参数可能会发生变化,从而提高凝结过程中表面上的热交换速率。发现在初始半径范围r = 20-40μm和静态接触角θs〜160º范围内的液滴出现了可靠的条件。此外,对于初始半径最大为500μm的液滴观察到跳跃现象。最后,我们的研究还表明,液滴聚结时跳跃的临界接触角为θc〜140º。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号